1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
//! The `darling::Error` type, the multiple error `Accumulator`, and their internals.
//!
//! Error handling is one of the core values of `darling`; creating great errors is hard and
//! never the reason that a proc-macro author started writing their crate. As a result, the
//! `Error` type in `darling` tries to make adding span information, suggestions, and other
//! help content easy when manually implementing `darling` traits, and automatic when deriving
//! them.

use proc_macro2::{Span, TokenStream};
use std::error::Error as StdError;
use std::fmt;
use std::iter::{self, Iterator};
use std::string::ToString;
use std::vec;
use syn::spanned::Spanned;
use syn::{Expr, Lit, LitStr, Path};

#[cfg(feature = "diagnostics")]
mod child;
mod kind;

use crate::util::path_to_string;

use self::kind::{ErrorKind, ErrorUnknownField};

/// An alias of `Result` specific to attribute parsing.
pub type Result<T> = ::std::result::Result<T, Error>;

/// An error encountered during attribute parsing.
///
/// Given that most errors darling encounters represent code bugs in dependent crates,
/// the internal structure of the error is deliberately opaque.
///
/// # Usage
/// Proc-macro expansion happens very infrequently compared to runtime tasks such as
/// deserialization, and it happens in the context of an expensive compilation taks.
/// For that reason, darling prefers not to fail on the first error it encounters, instead
/// doing as much work as it can, accumulating errors into a single report.
///
/// As a result, `darling::Error` is more of guaranteed-non-empty error collection
/// than a single problem. These errors also have some notion of hierarchy, stemming from
/// the hierarchical nature of darling's input.
///
/// These characteristics make for great experiences when using darling-powered crates,
/// provided crates using darling adhere to some best practices:
///
/// 1. Do not attempt to simplify a `darling::Error` into some other error type, such as
///    `syn::Error`. To surface compile errors, instead use `darling::Error::write_errors`.
///    This preserves all span information, suggestions, etc. Wrapping a `darling::Error` in
///    a custom error enum works as-expected and does not force any loss of fidelity.
/// 2. Do not use early return (e.g. the `?` operator) for custom validations. Instead,
///    create an [`error::Accumulator`](Accumulator) to collect errors as they are encountered.  Then use
///    [`Accumulator::finish`] to return your validated result; it will give `Ok` if and only if
///    no errors were encountered.  This can create very complex custom validation functions;
///    in those cases, split independent "validation chains" out into their own functions to
///    keep the main validator manageable.
/// 3. Use `darling::Error::custom` to create additional errors as-needed, then call `with_span`
///    to ensure those errors appear in the right place. Use `darling::util::SpannedValue` to keep
///    span information around on parsed fields so that custom diagnostics can point to the correct
///    parts of the input AST.
#[derive(Debug, Clone)]
pub struct Error {
    kind: ErrorKind,
    locations: Vec<String>,
    /// The span to highlight in the emitted diagnostic.
    span: Option<Span>,
    /// Additional diagnostic messages to show with the error.
    #[cfg(feature = "diagnostics")]
    children: Vec<child::ChildDiagnostic>,
}

/// Error creation functions
impl Error {
    pub(in crate::error) fn new(kind: ErrorKind) -> Self {
        Error {
            kind,
            locations: Vec::new(),
            span: None,
            #[cfg(feature = "diagnostics")]
            children: vec![],
        }
    }

    /// Creates a new error with a custom message.
    pub fn custom<T: fmt::Display>(msg: T) -> Self {
        Error::new(ErrorKind::Custom(msg.to_string()))
    }

    /// Creates a new error for a field that appears twice in the input.
    pub fn duplicate_field(name: &str) -> Self {
        Error::new(ErrorKind::DuplicateField(name.into()))
    }

    /// Creates a new error for a field that appears twice in the input. Helper to avoid repeating
    /// the syn::Path to String conversion.
    pub fn duplicate_field_path(path: &Path) -> Self {
        Error::duplicate_field(&path_to_string(path))
    }

    /// Creates a new error for a non-optional field that does not appear in the input.
    pub fn missing_field(name: &str) -> Self {
        Error::new(ErrorKind::MissingField(name.into()))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond
    /// to a known field.
    pub fn unknown_field(name: &str) -> Self {
        Error::new(ErrorKind::UnknownField(name.into()))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond
    /// to a known field. Helper to avoid repeating the syn::Path to String conversion.
    pub fn unknown_field_path(path: &Path) -> Self {
        Error::unknown_field(&path_to_string(path))
    }

    /// Creates a new error for a field name that appears in the input but does not correspond to
    /// a known attribute. The second argument is the list of known attributes; if a similar name
    /// is found that will be shown in the emitted error message.
    pub fn unknown_field_with_alts<'a, T, I>(field: &str, alternates: I) -> Self
    where
        T: AsRef<str> + 'a,
        I: IntoIterator<Item = &'a T>,
    {
        Error::new(ErrorUnknownField::with_alts(field, alternates).into())
    }

    /// Creates a new error for a field name that appears in the input but does not correspond to
    /// a known attribute. The second argument is the list of known attributes; if a similar name
    /// is found that will be shown in the emitted error message.
    pub fn unknown_field_path_with_alts<'a, T, I>(field: &Path, alternates: I) -> Self
    where
        T: AsRef<str> + 'a,
        I: IntoIterator<Item = &'a T>,
    {
        Error::new(ErrorUnknownField::with_alts(&path_to_string(field), alternates).into())
    }

    /// Creates a new error for a struct or variant that does not adhere to the supported shape.
    pub fn unsupported_shape(shape: &str) -> Self {
        Error::new(ErrorKind::UnsupportedShape {
            observed: shape.into(),
            expected: None,
        })
    }

    pub fn unsupported_shape_with_expected<T: fmt::Display>(shape: &str, expected: &T) -> Self {
        Error::new(ErrorKind::UnsupportedShape {
            observed: shape.into(),
            expected: Some(expected.to_string()),
        })
    }

    pub fn unsupported_format(format: &str) -> Self {
        Error::new(ErrorKind::UnexpectedFormat(format.into()))
    }

    /// Creates a new error for a field which has an unexpected literal type.
    pub fn unexpected_type(ty: &str) -> Self {
        Error::new(ErrorKind::UnexpectedType(ty.into()))
    }

    pub fn unexpected_expr_type(expr: &Expr) -> Self {
        Error::unexpected_type(match *expr {
            Expr::Array(_) => "array",
            Expr::Assign(_) => "assign",
            Expr::Async(_) => "async",
            Expr::Await(_) => "await",
            Expr::Binary(_) => "binary",
            Expr::Block(_) => "block",
            Expr::Break(_) => "break",
            Expr::Call(_) => "call",
            Expr::Cast(_) => "cast",
            Expr::Closure(_) => "closure",
            Expr::Const(_) => "const",
            Expr::Continue(_) => "continue",
            Expr::Field(_) => "field",
            Expr::ForLoop(_) => "for_loop",
            Expr::Group(_) => "group",
            Expr::If(_) => "if",
            Expr::Index(_) => "index",
            Expr::Infer(_) => "infer",
            Expr::Let(_) => "let",
            Expr::Lit(_) => "lit",
            Expr::Loop(_) => "loop",
            Expr::Macro(_) => "macro",
            Expr::Match(_) => "match",
            Expr::MethodCall(_) => "method_call",
            Expr::Paren(_) => "paren",
            Expr::Path(_) => "path",
            Expr::Range(_) => "range",
            Expr::Reference(_) => "reference",
            Expr::Repeat(_) => "repeat",
            Expr::Return(_) => "return",
            Expr::Struct(_) => "struct",
            Expr::Try(_) => "try",
            Expr::TryBlock(_) => "try_block",
            Expr::Tuple(_) => "tuple",
            Expr::Unary(_) => "unary",
            Expr::Unsafe(_) => "unsafe",
            Expr::Verbatim(_) => "verbatim",
            Expr::While(_) => "while",
            Expr::Yield(_) => "yield",
            // non-exhaustive enum
            _ => "unknown",
        })
        .with_span(expr)
    }

    /// Creates a new error for a field which has an unexpected literal type. This will automatically
    /// extract the literal type name from the passed-in `Lit` and set the span to encompass only the
    /// literal value.
    ///
    /// # Usage
    /// This is most frequently used in overrides of the `FromMeta::from_value` method.
    ///
    /// ```rust
    /// # // pretend darling_core is darling so the doc example looks correct.
    /// # extern crate darling_core as darling;
    /// # extern crate syn;
    ///
    /// use darling::{FromMeta, Error, Result};
    /// use syn::{Lit, LitStr};
    ///
    /// pub struct Foo(String);
    ///
    /// impl FromMeta for Foo {
    ///     fn from_value(value: &Lit) -> Result<Self> {
    ///         if let Lit::Str(ref lit_str) = *value {
    ///             Ok(Foo(lit_str.value()))
    ///         } else {
    ///             Err(Error::unexpected_lit_type(value))
    ///         }
    ///     }
    /// }
    ///
    /// # fn main() {}
    /// ```
    pub fn unexpected_lit_type(lit: &Lit) -> Self {
        Error::unexpected_type(match *lit {
            Lit::Str(_) => "string",
            Lit::ByteStr(_) => "byte string",
            Lit::Byte(_) => "byte",
            Lit::Char(_) => "char",
            Lit::Int(_) => "int",
            Lit::Float(_) => "float",
            Lit::Bool(_) => "bool",
            Lit::Verbatim(_) => "verbatim",
            // non-exhaustive enum
            _ => "unknown",
        })
        .with_span(lit)
    }

    /// Creates a new error for a value which doesn't match a set of expected literals.
    pub fn unknown_value(value: &str) -> Self {
        Error::new(ErrorKind::UnknownValue(value.into()))
    }

    /// Creates a new error for a list which did not get enough items to proceed.
    pub fn too_few_items(min: usize) -> Self {
        Error::new(ErrorKind::TooFewItems(min))
    }

    /// Creates a new error when a list got more items than it supports. The `max` argument
    /// is the largest number of items the receiver could accept.
    pub fn too_many_items(max: usize) -> Self {
        Error::new(ErrorKind::TooManyItems(max))
    }

    /// Bundle a set of multiple errors into a single `Error` instance.
    ///
    /// Usually it will be more convenient to use an [`error::Accumulator`](Accumulator).
    ///
    /// # Panics
    /// This function will panic if `errors.is_empty() == true`.
    pub fn multiple(mut errors: Vec<Error>) -> Self {
        match errors.len() {
            1 => errors
                .pop()
                .expect("Error array of length 1 has a first item"),
            0 => panic!("Can't deal with 0 errors"),
            _ => Error::new(ErrorKind::Multiple(errors)),
        }
    }

    /// Creates an error collector, for aggregating multiple errors
    ///
    /// See [`Accumulator`] for details.
    pub fn accumulator() -> Accumulator {
        Default::default()
    }
}

impl Error {
    /// Create a new error about a literal string that doesn't match a set of known
    /// or permissible values. This function can be made public if the API proves useful
    /// beyond impls for `syn` types.
    pub(crate) fn unknown_lit_str_value(value: &LitStr) -> Self {
        Error::unknown_value(&value.value()).with_span(value)
    }
}

/// Error instance methods
#[allow(clippy::len_without_is_empty)] // Error can never be empty
impl Error {
    /// Check if this error is associated with a span in the token stream.
    pub fn has_span(&self) -> bool {
        self.span.is_some()
    }

    /// Tie a span to the error if none is already present. This is used in `darling::FromMeta`
    /// and other traits to attach errors to the most specific possible location in the input
    /// source code.
    ///
    /// All `darling`-built impls, either from the crate or from the proc macro, will call this
    /// when appropriate during parsing, so it should not be necessary to call this unless you have
    /// overridden:
    ///
    /// * `FromMeta::from_meta`
    /// * `FromMeta::from_nested_meta`
    /// * `FromMeta::from_value`
    pub fn with_span<T: Spanned>(mut self, node: &T) -> Self {
        if !self.has_span() {
            self.span = Some(node.span());
        }

        self
    }

    /// Get a span for the error.
    ///
    /// # Return Value
    /// This function will return [`Span::call_site()`](proc_macro2::Span) if [`Self::has_span`] is `false`.
    /// To get the span only if one has been explicitly set for `self`, instead use [`Error::explicit_span`].
    pub fn span(&self) -> Span {
        self.span.unwrap_or_else(Span::call_site)
    }

    /// Get the span for `self`, if one has been set.
    pub fn explicit_span(&self) -> Option<Span> {
        self.span
    }

    /// Recursively converts a tree of errors to a flattened list.
    ///
    /// # Child Diagnostics
    /// If the `diagnostics` feature is enabled, any child diagnostics on `self`
    /// will be cloned down to all the errors within `self`.
    pub fn flatten(self) -> Self {
        Error::multiple(self.into_vec())
    }

    fn into_vec(self) -> Vec<Self> {
        if let ErrorKind::Multiple(errors) = self.kind {
            let locations = self.locations;

            #[cfg(feature = "diagnostics")]
            let children = self.children;

            errors
                .into_iter()
                .flat_map(|error| {
                    // This is mutated if the diagnostics feature is enabled
                    #[allow(unused_mut)]
                    let mut error = error.prepend_at(locations.clone());

                    // Any child diagnostics in `self` are cloned down to all the distinct
                    // errors contained in `self`.
                    #[cfg(feature = "diagnostics")]
                    error.children.extend(children.iter().cloned());

                    error.into_vec()
                })
                .collect()
        } else {
            vec![self]
        }
    }

    /// Adds a location to the error, such as a field or variant.
    /// Locations must be added in reverse order of specificity.
    pub fn at<T: fmt::Display>(mut self, location: T) -> Self {
        self.locations.insert(0, location.to_string());
        self
    }

    /// Adds a location to the error, such as a field or variant.
    /// Locations must be added in reverse order of specificity. This is a helper function to avoid
    /// repeating path to string logic.
    pub fn at_path(self, path: &Path) -> Self {
        self.at(path_to_string(path))
    }

    /// Gets the number of individual errors in this error.
    ///
    /// This function never returns `0`, as it's impossible to construct
    /// a multi-error from an empty `Vec`.
    pub fn len(&self) -> usize {
        self.kind.len()
    }

    /// Consider additional field names as "did you mean" suggestions for
    /// unknown field errors **if and only if** the caller appears to be operating
    /// at error's origin (meaning no calls to [`Self::at`] have yet taken place).
    ///
    /// # Usage
    /// `flatten` fields in derived trait implementations rely on this method to offer correct
    /// "did you mean" suggestions in errors.
    ///
    /// Because the `flatten` field receives _all_ unknown fields, if a user mistypes a field name
    /// that is present on the outer struct but not the flattened struct, they would get an incomplete
    /// or inferior suggestion unless this method was invoked.
    pub fn add_sibling_alts_for_unknown_field<'a, T, I>(mut self, alternates: I) -> Self
    where
        T: AsRef<str> + 'a,
        I: IntoIterator<Item = &'a T>,
    {
        // The error may have bubbled up before this method was called,
        // and in those cases adding alternates would be incorrect.
        if !self.locations.is_empty() {
            return self;
        }

        if let ErrorKind::UnknownField(unknown_field) = &mut self.kind {
            unknown_field.add_alts(alternates);
        } else if let ErrorKind::Multiple(errors) = self.kind {
            let alternates = alternates.into_iter().collect::<Vec<_>>();
            self.kind = ErrorKind::Multiple(
                errors
                    .into_iter()
                    .map(|err| {
                        err.add_sibling_alts_for_unknown_field(
                            // This clone seems like it shouldn't be necessary.
                            // Attempting to borrow alternates here leads to the following compiler error:
                            //
                            // error: reached the recursion limit while instantiating `darling::Error::add_sibling_alts_for_unknown_field::<'_, &&&&..., ...>`
                            alternates.clone(),
                        )
                    })
                    .collect(),
            )
        }

        self
    }

    /// Adds a location chain to the head of the error's existing locations.
    fn prepend_at(mut self, mut locations: Vec<String>) -> Self {
        if !locations.is_empty() {
            locations.extend(self.locations);
            self.locations = locations;
        }

        self
    }

    /// Gets the location slice.
    #[cfg(test)]
    pub(crate) fn location(&self) -> Vec<&str> {
        self.locations.iter().map(|i| i.as_str()).collect()
    }

    /// Write this error and any children as compile errors into a `TokenStream` to
    /// be returned by the proc-macro.
    ///
    /// The behavior of this method will be slightly different if the `diagnostics` feature
    /// is enabled: In that case, the diagnostics will be emitted immediately by this call,
    /// and an empty `TokenStream` will be returned.
    ///
    /// Return these tokens unmodified to avoid disturbing the attached span information.
    ///
    /// # Usage
    /// ```rust,ignore
    /// // in your proc-macro function
    /// let opts = match MyOptions::from_derive_input(&ast) {
    ///     Ok(val) => val,
    ///     Err(err) => {
    ///         return err.write_errors();
    ///     }
    /// }
    /// ```
    pub fn write_errors(self) -> TokenStream {
        #[cfg(feature = "diagnostics")]
        {
            self.emit();
            TokenStream::default()
        }

        #[cfg(not(feature = "diagnostics"))]
        {
            syn::Error::from(self).into_compile_error()
        }
    }

    #[cfg(feature = "diagnostics")]
    fn single_to_diagnostic(self) -> ::proc_macro::Diagnostic {
        use proc_macro::{Diagnostic, Level};

        // Delegate to dedicated error formatters when applicable.
        //
        // If span information is available, don't include the error property path
        // since it's redundant and not consistent with native compiler diagnostics.
        let diagnostic = match self.kind {
            ErrorKind::UnknownField(euf) => euf.into_diagnostic(self.span),
            _ => match self.span {
                Some(span) => span.unwrap().error(self.kind.to_string()),
                None => Diagnostic::new(Level::Error, self.to_string()),
            },
        };

        self.children
            .into_iter()
            .fold(diagnostic, |out, child| child.append_to(out))
    }

    /// Transform this error and its children into a list of compiler diagnostics
    /// and emit them. If the `Error` has associated span information, the diagnostics
    /// will identify the correct location in source code automatically.
    ///
    /// # Stability
    /// This is only available on `nightly` until the compiler `proc_macro_diagnostic`
    /// feature stabilizes. Until then, it may break at any time.
    #[cfg(feature = "diagnostics")]
    pub fn emit(self) {
        for error in self.flatten() {
            error.single_to_diagnostic().emit()
        }
    }

    /// Transform the error into a compiler diagnostic and - if the diagnostic points to
    /// a specific code location - add a spanned help child diagnostic that points to the
    /// parent derived trait.
    ///
    /// This is experimental and therefore not exposed outside the crate.
    #[cfg(feature = "diagnostics")]
    #[allow(dead_code)]
    fn emit_with_macro_help_span(self) {
        use proc_macro::Diagnostic;

        for error in self.flatten() {
            let needs_help = error.has_span();
            let diagnostic = error.single_to_diagnostic();
            Diagnostic::emit(if needs_help {
                diagnostic.span_help(
                    Span::call_site().unwrap(),
                    "Encountered as part of this derive-mode-macro",
                )
            } else {
                diagnostic
            })
        }
    }
}

#[cfg(feature = "diagnostics")]
macro_rules! add_child {
    ($unspanned:ident, $spanned:ident, $level:ident) => {
        #[doc = concat!("Add a child ", stringify!($unspanned), " message to this error.")]
        #[doc = "# Example"]
        #[doc = "```rust"]
        #[doc = "# use darling_core::Error;"]
        #[doc = concat!(r#"Error::custom("Example")."#, stringify!($unspanned), r#"("message content");"#)]
        #[doc = "```"]
        pub fn $unspanned<T: fmt::Display>(mut self, message: T) -> Self {
            self.children.push(child::ChildDiagnostic::new(
                child::Level::$level,
                None,
                message.to_string(),
            ));
            self
        }

        #[doc = concat!("Add a child ", stringify!($unspanned), " message to this error with its own span.")]
        #[doc = "# Example"]
        #[doc = "```rust"]
        #[doc = "# use darling_core::Error;"]
        #[doc = "# let item_to_span = proc_macro2::Span::call_site();"]
        #[doc = concat!(r#"Error::custom("Example")."#, stringify!($spanned), r#"(&item_to_span, "message content");"#)]
        #[doc = "```"]
        pub fn $spanned<S: Spanned, T: fmt::Display>(mut self, span: &S, message: T) -> Self {
            self.children.push(child::ChildDiagnostic::new(
                child::Level::$level,
                Some(span.span()),
                message.to_string(),
            ));
            self
        }
    };
}

/// Add child diagnostics to the error.
///
/// # Example
///
/// ## Code
///
/// ```rust
/// # use darling_core::Error;
/// # let struct_ident = proc_macro2::Span::call_site();
/// Error::custom("this is a demo")
///     .with_span(&struct_ident)
///     .note("we wrote this")
///     .help("try doing this instead");
/// ```
/// ## Output
///
/// ```text
/// error: this is a demo
///   --> my_project/my_file.rs:3:5
///    |
/// 13 |     FooBar { value: String },
///    |     ^^^^^^
///    |
///    = note: we wrote this
///    = help: try doing this instead
/// ```
#[cfg(feature = "diagnostics")]
impl Error {
    add_child!(error, span_error, Error);
    add_child!(warning, span_warning, Warning);
    add_child!(note, span_note, Note);
    add_child!(help, span_help, Help);
}

impl StdError for Error {
    fn description(&self) -> &str {
        self.kind.description()
    }

    fn cause(&self) -> Option<&dyn StdError> {
        None
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.kind)?;
        if !self.locations.is_empty() {
            write!(f, " at {}", self.locations.join("/"))?;
        }

        Ok(())
    }
}

impl From<syn::Error> for Error {
    fn from(e: syn::Error) -> Self {
        // This impl assumes there is nothing but the message and span that needs to be preserved
        // from the passed-in error. If this changes at some point, a new ErrorKind should be made
        // to hold the syn::Error, and this impl should preserve it unmodified while setting its own
        // span to be a copy of the passed-in error.
        Self {
            span: Some(e.span()),
            ..Self::custom(e)
        }
    }
}

impl From<Error> for syn::Error {
    fn from(e: Error) -> Self {
        if e.len() == 1 {
            if let Some(span) = e.explicit_span() {
                // Don't include the location path if the error has an explicit span,
                // since it will be redundant and isn't consistent with how rustc
                // exposes errors.
                syn::Error::new(span, e.kind)
            } else {
                // If the error's span is going to be the macro call site, include
                // the location information to try and help the user pinpoint the issue.
                syn::Error::new(e.span(), e)
            }
        } else {
            let mut syn_errors = e.flatten().into_iter().map(syn::Error::from);
            let mut error = syn_errors
                .next()
                .expect("darling::Error can never be empty");

            for next_error in syn_errors {
                error.combine(next_error);
            }

            error
        }
    }
}

// Don't want to publicly commit to Error supporting equality yet, but
// not having it makes testing very difficult. Note that spans are not
// considered for equality since that would break testing in most cases.
#[cfg(test)]
impl PartialEq for Error {
    fn eq(&self, other: &Self) -> bool {
        self.kind == other.kind && self.locations == other.locations
    }
}

#[cfg(test)]
impl Eq for Error {}

impl IntoIterator for Error {
    type Item = Error;
    type IntoIter = IntoIter;

    fn into_iter(self) -> IntoIter {
        if let ErrorKind::Multiple(errors) = self.kind {
            IntoIter {
                inner: IntoIterEnum::Multiple(errors.into_iter()),
            }
        } else {
            IntoIter {
                inner: IntoIterEnum::Single(iter::once(self)),
            }
        }
    }
}

enum IntoIterEnum {
    Single(iter::Once<Error>),
    Multiple(vec::IntoIter<Error>),
}

impl Iterator for IntoIterEnum {
    type Item = Error;

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            IntoIterEnum::Single(ref mut content) => content.next(),
            IntoIterEnum::Multiple(ref mut content) => content.next(),
        }
    }
}

/// An iterator that moves out of an `Error`.
pub struct IntoIter {
    inner: IntoIterEnum,
}

impl Iterator for IntoIter {
    type Item = Error;

    fn next(&mut self) -> Option<Error> {
        self.inner.next()
    }
}

/// Accumulator for errors, for helping call [`Error::multiple`].
///
/// See the docs for [`darling::Error`](Error) for more discussion of error handling with darling.
///
/// # Panics
///
/// `Accumulator` panics on drop unless [`finish`](Self::finish), [`finish_with`](Self::finish_with),
/// or [`into_inner`](Self::into_inner) has been called, **even if it contains no errors**.
/// If you want to discard an `Accumulator` that you know to be empty, use `accumulator.finish().unwrap()`.
///
/// # Example
///
/// ```
/// # extern crate darling_core as darling;
/// # struct Thing;
/// # struct Output;
/// # impl Thing { fn validate(self) -> darling::Result<Output> { Ok(Output) } }
/// fn validate_things(inputs: Vec<Thing>) -> darling::Result<Vec<Output>> {
///     let mut errors = darling::Error::accumulator();
///
///     let outputs = inputs
///         .into_iter()
///         .filter_map(|thing| errors.handle_in(|| thing.validate()))
///         .collect::<Vec<_>>();
///
///     errors.finish()?;
///     Ok(outputs)
/// }
/// ```
#[derive(Debug)]
#[must_use = "Accumulator will panic on drop if not defused."]
pub struct Accumulator(Option<Vec<Error>>);

impl Accumulator {
    /// Runs a closure, returning the successful value as `Some`, or collecting the error
    ///
    /// The closure's return type is `darling::Result`, so inside it one can use `?`.
    pub fn handle_in<T, F: FnOnce() -> Result<T>>(&mut self, f: F) -> Option<T> {
        self.handle(f())
    }

    /// Handles a possible error.
    ///
    /// Returns a successful value as `Some`, or collects the error and returns `None`.
    pub fn handle<T>(&mut self, result: Result<T>) -> Option<T> {
        match result {
            Ok(y) => Some(y),
            Err(e) => {
                self.push(e);
                None
            }
        }
    }

    /// Stop accumulating errors, producing `Ok` if there are no errors or producing
    /// an error with all those encountered by the accumulator.
    pub fn finish(self) -> Result<()> {
        self.finish_with(())
    }

    /// Bundles the collected errors if there were any, or returns the success value
    ///
    /// Call this at the end of your input processing.
    ///
    /// If there were no errors recorded, returns `Ok(success)`.
    /// Otherwise calls [`Error::multiple`] and returns the result as an `Err`.
    pub fn finish_with<T>(self, success: T) -> Result<T> {
        let errors = self.into_inner();
        if errors.is_empty() {
            Ok(success)
        } else {
            Err(Error::multiple(errors))
        }
    }

    fn errors(&mut self) -> &mut Vec<Error> {
        match &mut self.0 {
            Some(errors) => errors,
            None => panic!("darling internal error: Accumulator accessed after defuse"),
        }
    }

    /// Returns the accumulated errors as a `Vec`.
    ///
    /// This function defuses the drop bomb.
    #[must_use = "Accumulated errors should be handled or propagated to the caller"]
    pub fn into_inner(mut self) -> Vec<Error> {
        match self.0.take() {
            Some(errors) => errors,
            None => panic!("darling internal error: Accumulator accessed after defuse"),
        }
    }

    /// Add one error to the collection.
    pub fn push(&mut self, error: Error) {
        self.errors().push(error)
    }

    /// Finish the current accumulation, and if there are no errors create a new `Self` so processing may continue.
    ///
    /// This is shorthand for:
    ///
    /// ```rust,ignore
    /// errors.finish()?;
    /// errors = Error::accumulator();
    /// ```
    ///
    /// # Drop Behavior
    /// This function returns a new [`Accumulator`] in the success case.
    /// This new accumulator is "armed" and will detonate if dropped without being finished.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate darling_core as darling;
    /// # struct Thing;
    /// # struct Output;
    /// # impl Thing { fn validate(&self) -> darling::Result<Output> { Ok(Output) } }
    /// fn validate(lorem_inputs: &[Thing], ipsum_inputs: &[Thing])
    ///             -> darling::Result<(Vec<Output>, Vec<Output>)> {
    ///     let mut errors = darling::Error::accumulator();
    ///
    ///     let lorems = lorem_inputs.iter().filter_map(|l| {
    ///         errors.handle(l.validate())
    ///     }).collect();
    ///
    ///     errors = errors.checkpoint()?;
    ///
    ///     let ipsums = ipsum_inputs.iter().filter_map(|l| {
    ///         errors.handle(l.validate())
    ///     }).collect();
    ///
    ///     errors.finish_with((lorems, ipsums))
    /// }
    /// # validate(&[], &[]).unwrap();
    /// ```
    pub fn checkpoint(self) -> Result<Accumulator> {
        // The doc comment says on success we "return the Accumulator for future use".
        // Actually, we have consumed it by feeding it to finish so we make a fresh one.
        // This is OK since by definition of the success path, it was empty on entry.
        self.finish()?;
        Ok(Self::default())
    }
}

impl Default for Accumulator {
    fn default() -> Self {
        Accumulator(Some(vec![]))
    }
}

impl Extend<Error> for Accumulator {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = Error>,
    {
        self.errors().extend(iter)
    }
}

impl Drop for Accumulator {
    fn drop(&mut self) {
        // don't try to panic if we are currently unwinding a panic
        // otherwise we end up with an unhelful "thread panicked while panicking. aborting." message
        if !std::thread::panicking() {
            if let Some(errors) = &mut self.0 {
                match errors.len() {
                    0 => panic!("darling::error::Accumulator dropped without being finished"),
                    error_count => panic!("darling::error::Accumulator dropped without being finished. {} errors were lost.", error_count)
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Error;

    #[test]
    fn flatten_noop() {
        let err = Error::duplicate_field("hello").at("world");
        assert_eq!(err.clone().flatten(), err);
    }

    #[test]
    fn flatten_simple() {
        let err = Error::multiple(vec![
            Error::unknown_field("hello").at("world"),
            Error::missing_field("hell_no").at("world"),
        ])
        .at("foo")
        .flatten();

        assert!(err.location().is_empty());

        let mut err_iter = err.into_iter();

        let first = err_iter.next();
        assert!(first.is_some());
        assert_eq!(first.unwrap().location(), vec!["foo", "world"]);

        let second = err_iter.next();
        assert!(second.is_some());

        assert_eq!(second.unwrap().location(), vec!["foo", "world"]);

        assert!(err_iter.next().is_none());
    }

    #[test]
    fn len_single() {
        let err = Error::duplicate_field("hello");
        assert_eq!(1, err.len());
    }

    #[test]
    fn len_multiple() {
        let err = Error::multiple(vec![
            Error::duplicate_field("hello"),
            Error::missing_field("hell_no"),
        ]);
        assert_eq!(2, err.len());
    }

    #[test]
    fn len_nested() {
        let err = Error::multiple(vec![
            Error::duplicate_field("hello"),
            Error::multiple(vec![
                Error::duplicate_field("hi"),
                Error::missing_field("bye"),
                Error::multiple(vec![Error::duplicate_field("whatsup")]),
            ]),
        ]);

        assert_eq!(4, err.len());
    }

    #[test]
    fn accum_ok() {
        let errs = Error::accumulator();
        assert_eq!("test", errs.finish_with("test").unwrap());
    }

    #[test]
    fn accum_errr() {
        let mut errs = Error::accumulator();
        errs.push(Error::custom("foo!"));
        errs.finish().unwrap_err();
    }

    #[test]
    fn accum_into_inner() {
        let mut errs = Error::accumulator();
        errs.push(Error::custom("foo!"));
        let errs: Vec<_> = errs.into_inner();
        assert_eq!(errs.len(), 1);
    }

    #[test]
    #[should_panic(expected = "Accumulator dropped")]
    fn accum_drop_panic() {
        let _errs = Error::accumulator();
    }

    #[test]
    #[should_panic(expected = "2 errors")]
    fn accum_drop_panic_with_error_count() {
        let mut errors = Error::accumulator();
        errors.push(Error::custom("first"));
        errors.push(Error::custom("second"));
    }

    #[test]
    fn accum_checkpoint_error() {
        let mut errs = Error::accumulator();
        errs.push(Error::custom("foo!"));
        errs.checkpoint().unwrap_err();
    }

    #[test]
    #[should_panic(expected = "Accumulator dropped")]
    fn accum_checkpoint_drop_panic() {
        let mut errs = Error::accumulator();
        errs = errs.checkpoint().unwrap();
        let _ = errs;
    }
}