1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
//! Traits and types used for tracking the usage of generic parameters through a proc-macro input.
//!
//! When generating trait impls, libraries often want to automatically figure out which type parameters
//! are used in which fields, and then emit bounds that will produce the most permissive compilable
//! code.
//!
//! # Usage
//!
//! ## Example 1: Filtering
//! This example accepts a proc-macro input, then finds all lifetimes and type parameters used
//! by private fields.
//!
//! ```rust
//! # extern crate darling_core;
//! # extern crate syn;
//! #
//! # // in real-world usage, import from `darling`
//! # use darling_core::usage::{self, CollectLifetimes, CollectTypeParams, GenericsExt, Purpose};
//! # use syn::{Data, DeriveInput, GenericParam, Generics, Visibility};
//! #
//! # #[allow(dead_code)]
//! fn process(input: &DeriveInput) -> Generics {
//! let type_params = input.generics.declared_type_params();
//! let lifetimes = input.generics.declared_lifetimes();
//!
//! let mut ret_generics = input.generics.clone();
//!
//! if let Data::Struct(ref body) = input.data {
//! let internal_fields = body
//! .fields
//! .iter()
//! .filter(|field| field.vis == Visibility::Inherited)
//! .collect::<Vec<_>>();
//!
//! let int_type_params = internal_fields
//! .collect_type_params(&Purpose::BoundImpl.into(), &type_params);
//!
//! // We could reuse the vec from above, but here we'll instead
//! // directly consume the chained iterator.
//! let int_lifetimes = body
//! .fields
//! .iter()
//! .filter(|field| field.vis == Visibility::Inherited)
//! .collect_lifetimes(&Purpose::BoundImpl.into(), &lifetimes);
//!
//!
//! ret_generics.params = ret_generics
//! .params
//! .into_iter()
//! .filter(|gp| {
//! match *gp {
//! GenericParam::Type(ref ty) => int_type_params.contains(&ty.ident),
//! GenericParam::Lifetime(ref lt) => int_lifetimes.contains(<.lifetime),
//! _ => true,
//! }
//! })
//! .collect();
//! }
//!
//! ret_generics
//! }
//!
//! # fn main() {}
//! ```
//!
//! ## Example 2: Integrating with `FromDeriveInput`
//! It is possible to use `darling`'s magic fields feature in tandem with the `usage` feature set.
//! While there is no custom derive for `UsesTypeParams` or `UsesLifetimes`, there are macros to
//! generate impls.
//!
//! ```rust,ignore
//! #![allow(dead_code)]
//!
//! #[derive(FromField)]
//! #[darling(attributes(speak))]
//! struct SpeakerField {
//! ident: Option<syn::Ident>,
//! ty: syn::Type,
//! #[darling(default)]
//! volume: Option<u32>,
//! }
//!
//! uses_type_params!(SpeakerField, ty);
//! uses_lifetimes!(SpeakerField, ty);
//!
//! #[derive(FromDeriveInput)]
//! struct SpeakerOptions {
//! generics: syn::Generics,
//! data: darling::ast::Data<darling::util::Ignored, SpeakerField>,
//! }
//! ```
//!
//! At this point, you are able to call `uses_type_params` on `SpeakerOptions.data`, or any filtered
//! view of it. `darling` internally uses this in conjunction with the `skip` meta-item to determine
//! which type parameters don't require the `FromMeta` bound in generated impls.
//!
//! **Note:** If you are performing operations referencing generic params in meta-items parsed by `darling`,
//! you should determine if those impact the emitted code and wire up `UsesTypeParams` accordingly for
//! your field/variant.
mod generics_ext;
mod ident_set;
mod lifetimes;
mod options;
mod type_params;
pub use self::generics_ext::GenericsExt;
pub use self::ident_set::{IdentRefSet, IdentSet};
pub use self::lifetimes::{CollectLifetimes, LifetimeRefSet, LifetimeSet, UsesLifetimes};
pub use self::options::{Options, Purpose};
pub use self::type_params::{CollectTypeParams, UsesTypeParams};